Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin

Identifieur interne : 000000 ( Russie/Analysis ); suivant : 000001

Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin

Auteurs : RBID : Pascal:14-0089706

Descripteurs français

English descriptors

Abstract

The search for materials with thermoelectric parameters capable of operating at high temperatures continues to be of great interest; n-type metal oxides are promising candidates. Here, two series of thin (˜100 nm) indium oxide films doped by tin (from 0 to 50 at%) were deposited by spray pyrolysis at 350 °C and 450 °C. Characterization of the films was performed using X-ray diffraction, scanning electron microscopy and atomic force microscopy. Thermoelectric properties, i.e., the conductivity and the Seebeck coefficient, were then studied over a temperature range of 20-450 °C. It was shown that these parameters as well as their nanostructure were strongly dependent on the Sn content and deposition temperature. Specifically, the conductivity had maxima near 5% and 20% for films deposited at 350 °C and 450 °C, respectively. The power factor (PF) as a function of Sn content also demonstrated non-monotonous behavior with two maxima; for films deposited at 350 °C these maxima were again observed near 5% and 20% of Sn content. The maximal PF value equaled to 4.7 mW/( m.K2) at a temperature of 450 °C was observed at 5 at.% Sn. This result is one of the best ever obtained for metal oxides in a given temperature range. The optimal films were characterized by a cubic-like crystallite nanostructure with {400} surface faceting. A model explaining such high parameters was subsequently proposed. We also determined the effect of ambient humidity on the thermoelectric properties of nanostructured In2O3:Sn films at an operating temperature range below 400 °C, which is caused by the change of surface conductivity under the influence of water vapor.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0089706

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin</title>
<author>
<name sortKey="Brinzari, V" uniqKey="Brinzari V">V. Brinzari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State University of Moldova, Chisinau, Republic of Moldova</s1>
<s3>MDA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>State University of Moldova, Chisinau, Republic of Moldova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Damaskin, I" uniqKey="Damaskin I">I. Damaskin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Academy of Science of Moldova, Chisinau, Republic of Moldova</s1>
<s3>MDA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>Academy of Science of Moldova, Chisinau, Republic of Moldova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trakhtenberg, L" uniqKey="Trakhtenberg L">L. Trakhtenberg</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>Semenov Institute of Chemical Physics</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Moscow Institute of Physics and Technology, Moscow Region</s1>
<s2>Dolgoprudny</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Dolgoprudny</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cho, B K" uniqKey="Cho B">B. K. Cho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Gwangju Institute of Science and Technology</s1>
<s2>Gwangju</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju Institute of Science and Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Korotcenkov, G" uniqKey="Korotcenkov G">G. Korotcenkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Gwangju Institute of Science and Technology</s1>
<s2>Gwangju</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju Institute of Science and Technology</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0089706</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0089706 INIST</idno>
<idno type="RBID">Pascal:14-0089706</idno>
<idno type="wicri:Area/Main/Corpus">000063</idno>
<idno type="wicri:Area/Main/Repository">000012</idno>
<idno type="wicri:Area/Russie/Extraction">000000</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Crystallites</term>
<term>Cubic lattices</term>
<term>Electrical conductivity</term>
<term>Humidity</term>
<term>Indium additions</term>
<term>Indium oxide</term>
<term>Nanostructures</term>
<term>Pyrolysis</term>
<term>Scanning electron microscopy</term>
<term>Seebeck effect</term>
<term>Steam</term>
<term>Surface conductivity</term>
<term>Temperature dependence</term>
<term>Thermoelectric materials</term>
<term>Thermoelectric properties</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Oxyde d'indium</term>
<term>Couche mince</term>
<term>Addition étain</term>
<term>Matériau thermoélectrique</term>
<term>Addition indium</term>
<term>Pyrolyse</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie force atomique</term>
<term>Propriété thermoélectrique</term>
<term>Conductivité électrique</term>
<term>Effet Seebeck</term>
<term>Dépendance température</term>
<term>Nanostructure</term>
<term>Réseau cubique</term>
<term>Cristallite</term>
<term>Humidité</term>
<term>Conductivité superficielle</term>
<term>Vapeur eau</term>
<term>In2O3</term>
<term>6855J</term>
<term>7350L</term>
<term>7361</term>
<term>8107</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The search for materials with thermoelectric parameters capable of operating at high temperatures continues to be of great interest; n-type metal oxides are promising candidates. Here, two series of thin (˜100 nm) indium oxide films doped by tin (from 0 to 50 at%) were deposited by spray pyrolysis at 350 °C and 450 °C. Characterization of the films was performed using X-ray diffraction, scanning electron microscopy and atomic force microscopy. Thermoelectric properties, i.e., the conductivity and the Seebeck coefficient, were then studied over a temperature range of 20-450 °C. It was shown that these parameters as well as their nanostructure were strongly dependent on the Sn content and deposition temperature. Specifically, the conductivity had maxima near 5% and 20% for films deposited at 350 °C and 450 °C, respectively. The power factor (PF) as a function of Sn content also demonstrated non-monotonous behavior with two maxima; for films deposited at 350 °C these maxima were again observed near 5% and 20% of Sn content. The maximal PF value equaled to 4.7 mW/( m.K
<sup>2</sup>
) at a temperature of 450 °C was observed at 5 at.% Sn. This result is one of the best ever obtained for metal oxides in a given temperature range. The optimal films were characterized by a cubic-like crystallite nanostructure with {400} surface faceting. A model explaining such high parameters was subsequently proposed. We also determined the effect of ambient humidity on the thermoelectric properties of nanostructured In
<sub>2</sub>
O
<sub>3</sub>
:Sn films at an operating temperature range below 400 °C, which is caused by the change of surface conductivity under the influence of water vapor.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>552</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRINZARI (V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DAMASKIN (I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TRAKHTENBERG (L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHO (B. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KOROTCENKOV (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>State University of Moldova, Chisinau, Republic of Moldova</s1>
<s3>MDA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Academy of Science of Moldova, Chisinau, Republic of Moldova</s1>
<s3>MDA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Semenov Institute of Chemical Physics</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Moscow Institute of Physics and Technology, Moscow Region</s1>
<s2>Dolgoprudny</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Gwangju Institute of Science and Technology</s1>
<s2>Gwangju</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>225-231</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786330360</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0089706</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The search for materials with thermoelectric parameters capable of operating at high temperatures continues to be of great interest; n-type metal oxides are promising candidates. Here, two series of thin (˜100 nm) indium oxide films doped by tin (from 0 to 50 at%) were deposited by spray pyrolysis at 350 °C and 450 °C. Characterization of the films was performed using X-ray diffraction, scanning electron microscopy and atomic force microscopy. Thermoelectric properties, i.e., the conductivity and the Seebeck coefficient, were then studied over a temperature range of 20-450 °C. It was shown that these parameters as well as their nanostructure were strongly dependent on the Sn content and deposition temperature. Specifically, the conductivity had maxima near 5% and 20% for films deposited at 350 °C and 450 °C, respectively. The power factor (PF) as a function of Sn content also demonstrated non-monotonous behavior with two maxima; for films deposited at 350 °C these maxima were again observed near 5% and 20% of Sn content. The maximal PF value equaled to 4.7 mW/( m.K
<sup>2</sup>
) at a temperature of 450 °C was observed at 5 at.% Sn. This result is one of the best ever obtained for metal oxides in a given temperature range. The optimal films were characterized by a cubic-like crystallite nanostructure with {400} surface faceting. A model explaining such high parameters was subsequently proposed. We also determined the effect of ambient humidity on the thermoelectric properties of nanostructured In
<sub>2</sub>
O
<sub>3</sub>
:Sn films at an operating temperature range below 400 °C, which is caused by the change of surface conductivity under the influence of water vapor.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C50L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Matériau thermoélectrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thermoelectric materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Pyrolyse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Pyrolysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété thermoélectrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thermoelectric properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet Seebeck</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Seebeck effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cristallite</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Crystallites</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Humidité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Humidity</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Conductivité superficielle</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Surface conductivity</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Vapeur eau</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Steam</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7350L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0089706
   |texte=   Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024